Hvordan referanser kan etablere
grunnlaget for en artikkel
(og en masteroppgave)

How references may establish a
sound foundation of an article
(and maybe a theses)

© The Author 2005. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.

For Permissions, please email: journals.permissions(@oupjournals.org

doi:10.1093/comjnl/bxh068
S

FLORENTIN IPATE

Department of Computer Science and Mathematics, University of Pitesti, Str Targu din Vale 1,
0300 Pitesti, Romania
Email: fipate@ifsoft.ro

A cover automaton of a finite language L is a finite automaton that accepts all words in L and

possibly other words that are longer than any word in L. An algorithm for constructing a minimal

cover automaton of a finite language L is given in a recent paper. This paper goes a step further by

proposing a procedure for constructing all minimal cover automata of a given finite language L. The

concept of cover automaton is then generalized to a form of extended finite automaton, the stream
X-machine, and the procedure is extended to this more general model.

Received 8 January 2004, revised 30 September 2004

1. INTRODUCTION

This paper goes a step further by giving a procedure for

conctmiecting all minimal caver antamata of a oiven finjte

Finite automata [1, 2. 3] are widely used i
of computing. ranging from lexical analysis
protocol testing. Finite automata are know:
regular languages [4. 5]. However. in many a

Finite automata [1, 2. 3] -

of

finite automata only finite languages are used. 7 1, = al
states of a finite automaton (FA) that acce—=—— ston
is at least one more than the length of the -

REFERENCES

language and may be exponentially largg
On the other hand. if we do not restricy
accept only the given finite language but
extra words that are longer than the lo

[1] Hopcroft, J. E. and Ullman, J. D. (1979) Introduction to
Automata Theory, Languages and Computation. Addison

language. then the number of its states m Wesley, Reading, MA.
reduced. In most applications the maxis [2] Salomaa, A. (1969) Theory of Automata. Pergamon Press,
words in the language is known and the sy Oxford

of the length of the words processed. so
will usually be adequate. This is the
automata for finite languages.

[3] Cohen, D.I. A. (1996) Introduction to Computer Theory (2nd
edn). John Wiley & Sons, New York.

Informally. a cover automaton of a finite Tanguage L 15 an
FA that accepts all words in L and possibly other words that
are longer than any word in L. A minimal cover automaton of
L is a cover automaton of L having the least number of states.
In many cases. a minimal cover automaton of L has a much
smaller size than the minimal automaton that accepts L.

The concept of minimal cover automaton of a finite
language is introduced in [6] and it is shown that there may
be several minimal cover automata of the same language that
are not isomorphic. Furthermore. [6] provides an algorithm
that. for a finite language L (given as an FA that accepts
L or as a cover automaton of L). constructs a minimal cover
automaton of the language. An improved algorithm (in terms
of complexity) is also presented in [7].

T e T T T ST TS ST T TR T T T S I TS TS T S SIS T
into more complex. more detailed implementation-oriented
versions have been developed [14. 15]. Furthermore, several
models of communicating SXMs have been devised and used
in real applications [16, 17. 18].

One of the strengths of using SXMs to specify a system is
that it is possible to derive test sets from an SXM specification
which, if satisfied. guarantee, under certain constraints,
the correctness of the implementation with respect to the
specification [10. 19, 20. 21]. Among these constraints
are the so-called ‘design for test conditions’ that the SXM
specification has to meet: input-completeness and output-
distinguishability [10. 19]. The class of SXMs that meet
these conditions is therefore of particular interest and has

1. INTRODUCTION

Finite automata [1. 2., 3] are widely ug
of computing. ranging from lexical anal
protocol testing.

L ire for
regular languages [4. 5]. .

Finite automata are 11 = 1 s ' 2
regular languages [4. 5]. However. in many applications o : < e

finite automata only finite languages are used. The number of
states of a finite automaton (FA) that accepts a finite language
is at least one more than the length of the longest word in the

s N

a system as a finite set of states. each with an internal
store called memory. and a number of transitions between
the states. A transition is triggered by an input value,
nrodices an ontnnit valie and mav alter the memorv An

language and may be exponentially largg—e—st= g
On the other hand. if we do not restricy
accept only the given finite language but
extra words that are longer than the lo

[4] Salomaa, K., Yu, S. and Zhuang, Q. (1994) The state
complexity of some basic operations on regular languages.
Theoretical Computer Science, 125, 315-328.

language, then the number of its states m
reduced. In most applications the maxii
words in the language is known and the sy

[5] Yu, S. (1995) Regular Languages, Handbook of Formal
Languages. Springer Verlag.

of the length of the words processed. so such an automaton
will usually be adequate. This is the idea behind cover
automata for finite languages.

Informally. a cover automaton of a finite language L is an
FA that accepts all words in L and possibly other words that
are longer than any word in L. A minimal cover automaton of
L is a cover automaton of L having the least number of states.
In many cases. a minimal cover automaton of L has a much
smaller size than the minimal automaton that accepts L.

The concept of minimal cover automaton of a finite
language is introduced in [6] and it is shown that there may
be several minimal cover automata of the same language that
are not isomorphic. Furthermore. [6] provides an algorithm
that. for a finite language L (given as an FA that accepts
L or as a cover automaton of L). constructs a minimal cover
automaton of the language. An improved algorithm (in terms
of complexity) is also presented in [7].

a Specicarion Metod. especially Tor MTeraclive SySTels.
A tool to support the creation of SXM specifications has
been constructed [13]. The refinement of SXMs has been
investigated and techniques for refining given specifications
into more complex. more detailed implementation-oriented
versions have been developed [14. 15]. Furthermore, several
models of communicating SXMs have been devised and used
in real applications [16, 17. 18].

One of the strengths of using SXMs to specify a system is
that it is possible to derive test sets from an SXM specification
which, if satisfied. guarantee, under certain constraints,
the correctness of the implementation with respect to the
specification [10. 19, 20. 21]. Among these constraints
are the so-called ‘design for test conditions’ that the SXM
specification has to meet: input-completeness and output-
distinguishability [10. 19]. The class of SXMs that meet
these conditions is therefore of particular interest and has

The concept of minimal cover automaton of a finite
language is introduced in [6] and it is shown that there may
be several minimal cover automata of the same language that
are not isomorphic. Furthermore. [6] provides an algorithm
that, for a finite language L (given as an FA that accepts
L or as a cover automaton of L). constructs a minimal cover
automaton of the language. An improved algorithm (in terms
of complexity) is also presented in [7].

reduced. In most applications the maximum Ieneth of the

TIIC UCIICITS U UUUT TITST WOITdS.

by giving a procedure for
utomata of a given finite
n generalized to a form of
eam X-machines (SXMs).

1e [8. 9. 10] that describes
bs. each with an internal
per of transitions between
cered by an input value,
1y alter the memory. An
A (the associated FA) in
rion names (the processing
bine the dynamic features
a structures. thus sharing
Various case studies

words in the language
of the length of the w
will usually be adeq
automata for finite lar

Informally. a cover
FA that accepts all wq
are longer than any wq
L is a cover automato1
In many cases. a mini

267, 3—-16.

[6] Campeanu, C., Santean, N. and Yu, S. (1999) Mimimal cover
automata for finite languages. Theoretical Computer Science,

[7] Paun, A_. Santean, N. and Yu, S. (2001) An 0(n?) algorithm
for constructing minimal cover automata for finite languages.

smaller size than the 1

LNCS, 2088, 243-251.

The concept of minimal cover automaton of a finite
language is introduced in [6] and it is shown that there may
be several minimal cover automata of the same language that
are not isomorphic. Furthermore. [6] provides an algorithm
that. for a finite language L (given as an FA that accepts
L or as a cover automaton of L). constructs a minimal cover
automaton of the language. An improved algorithm (in terms
of complexity) is also presented in [7].

that it is possible to derive test sets from an SXM specification
which. if satisfied. guarantee, under certain constraints.
the correctness of the implementation with respect to the
specification [10. 19, 20. 21]. Among these constraints
are the so-called ‘design for test conditions’ that the SXM
specification has to meet: input-completeness and output-
distinguishability [10. 19]. The class of SXMs that meet
these conditions is therefore of particular interest and has

1. INTRODUCTION

Finite automata [1. 2, 3] are widely used in many areas
of computing. ranging from lexical analysis to circuit and
protocol testing. Finite automata are known to compute
regular languages [4. 5]. However. in many applications of
finite automata only finite languages are used. The number of
states of a finite automaton (FA) that accepts a finite language

This paper goes a step further by giving a procedure for
constructing all minimal cover automata of a given finite
language L. The procedure is then generalized to a form of
extended finite automata. called stream X-machines (SXMs).

An SXM is a type of X-machine [8. 9. 10] that describes
a system as a finite set of states. each with an internal
store called memory. and a number of transitions between

is atle
langual
On ths
accept
extra Y
langua
reduce]
words

oFthe An SXM is a type of X-machine [8. 9, 10] that describes

will u
autom

PR i s R oare by an input value,

This paper goes a step further by giving a procedure for [er the memory. An

1e associated FA) in

constructing all minimal cover automata of a given finite james (the processing
language L. The procedure is then generalized to a form of [dynamic features

ictures. thus sharing

extended finite automata. called stream X-machines (SXMSs). Warious case studies

alue of the SXM as
interactive systems.

a system as a finite set of states. each with an interna] [specifications has

it of SXMs has been

mfq Store called memory. and a number of transitions between | given specifications

lementation-oriented
Furthermore. several

B l'ha the states. A transition is triggered by an input value.

are lor S

L is a CE"Q" antamatan af I haxrine tha laact nnanhar afcotatac lllOdels Of Con'm‘lllllicaﬁllg SXD/IS lla\'e beell dEViSEd alld 1lsed
Inmany [8] Eilenberg, S. (1994) Automata, Languages and Machines,

smaller

The Vol. A. Academic Press, New York.

[9] Holcombe, M. (1988) X-machines as a basis for dynamic
system spectfication. Software Engineering Journal, 3, 69-76.

languag
be sevel
are not

o specify a system is
n SXM specification
certain constraints,
with respect to the
1g these constraints

that. foi [10] Holcombe, M. and Ipate, F. (1998) Correct Systems: Building [ions’ that the SXM

L or as
automat

a Business Process Solution. Springer Verlag, Berlin.

leteness and output-
of SXMs that meet

of complexity) is also presented in [7].

these conditions is therefore of particular interest and has

