Hvordan referanser kan etablere
grunnlaget for en artikkel
(og en masteroppgave)

How references may establish a
sound foundation of an article
(and maybe a thesis)

© The Author 2005. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.

For Permissions. please email: journals.permissions{@oupjournals.org

doi:10.1093/comjnl/bxh068
—

FLORENTIN IPATE

Department of Computer Science and Mathematics, University of Pitesti, Str Targu din Vale 1,
0300 Piresti, Romania
Email: fipare@ifsoft.ro

A cover automaton of a finite language L is a finite automaton that accepts all words in L and

possibly other words that are longer than any word in L. An algorithm for constructing a minimal

cover automaton of a finite language L is given in a recent paper. This paper goes a step further by

proposing a procedure for constructing all minimal cover automata of a given finite language L. The

concept of cover automaton is then generalized to a form of extended finite automaton, the stream
X-machine, and the procedure is extended to this more general model.

Received 8§ January 2004, revised 30 September 2004

(The Computer Journal, 48(2), 157-167)

1. INTRODUCTION

This paper goes a step further by giving a procedure for

conctmetine all minimal enver antnmata of 9 civen fingte

Finite automata [1, 2. 3] are widely used i
of computing, ranging from lexical analysis
protocol testing. Finite automata are know
regular languages [4. 5]. However. in many 4
finite automata only finite languages are used.

Finite automata [1, 2. 3] .

of
g).

1al

sfore called memorv and a8 mmmber of fran<ifions hefween

states of a finite automaton (FA) that accep~—=—"
is at least one more than the length of the
language and may be exponentially largg
On the other hand. if we do not restric
accept only the given finite language bu
extra words that are longer than the lo

REFERENCES

[1] Hoperoft, J. E. and Ullman, J. D. (1979) Introduction to
Automara Theory, Languages and Computation. Addison

language, then the number of its states m Wesley, Reading, MA.
reduced. In most applications the maxiy [2] Salomaa, A. (1969) Theo "o f Automata. Pergamon Press,
words in the language is known and the sy Oxforid

of the length of the words processed. so
will usually be adequate. This is the
automata for finite languages.

[3] Cohen, D.I. A (1996) Infroduction to Computer Theory (2nd
edn). John Wiley & Sons, New York.

Informally. a cover automaton of a finife Tanguage - 15 an
FA that accepts all words in L and possibly other words that
are longer than any word in L. A minimal cover automaton of
L is a cover automaton of L. having the least number of states.
In many cases. a minimal cover automaton of . has a much
smaller size than the minimal automaton that accepts L.

The concept of minimal cover automaton of a finite
language is introduced in [6] and it is shown that there may
be several minimal cover automata of the same language that
are not isomorphic. Furthermore, [6] provides an algorithm
that, for a finite language L (given as an FA that accepts
L or as a cover automaton of L). constructs a minimal cover
automaton of the language. Animproved algorithm (in terms
of complexity) is also presented in [7].

I T SO T ST T O O T e IO IO s T Te i iTs SV eIl S S I Ot o Ty
o =

info more complex. more detailed implementation-oriented
versions have been developed [14. 15]. Furthermore, several
models of communicating SXMs have been devised and used
in real applications [16, 17. 18].

One of the strengths of using SXMs to specify a system is
that it is possible to derive test sets from an SXM specification
which, if satisfied. guarantee. under certain constraints,
the correctness of the implementation with respect to the
specification [10. 19, 20, 21]. Among these constraints
are the so-called ‘design for test conditions’ that the SXM
specification has to meet: input-completeness and output-
distinguishability [10. 19]. The class of SXMs that meet
these conditions is therefore of particular interest and has

1. INTRODUCTION

Finite automata [1, 2, 3] are widely u
of computing, ranging from lexical anal
protocol testing. Finite automata are

Ir— - -7 "7 T - jrefor
. 3 ; finite
regular languages [4. 5]. o
B = e KMS).

= Ao oo or e oo o e aedcribes

= : [d
regular languages [4. 5]. However, in many applications of
finite automata only finite languages are used. The number of
states of a finite automaton (FA) that accepts a finite language
is at least one more than the length of the longest word in the

aay thher Toeneetls

a system as a finite set of states. each with an internal
store called memory. and a number of transitions between
the states. A fransition is triggered by an input value,
nrodinces an ontont valne and mav alter the memorv. An

language and may be exponentially largs —
On the other hand. if we do not restric
accept only the given finite language bu
extra words that are longer than the lo

[4] Salomaa, K., Yu, S. and Zhuang, Q. (1994) The state
complexity of some basic operations on regular languages.
Theoretical Computer Science, 125, 315-328.

language. then the number of its states m
reduced. In most applications the maxiy
words in the language is known and the sy

[5] Yu, S. (1995) Regular Languages, Handbook of Formal
Languages. Springer Verlag.

of the length of the words processed. so such an automaton
will usually be adequate. This is the idea behind cover
automata for finite languages.

Informally. a cover automaton of a finite language L is an
FA that accepts all words in L and possibly other words that
are longer than any word in L. A minimal cover automaton of
L is a cover automaton of L. having the least number of states.
In many cases. a minimal cover automaton of . has a much
smaller size than the minimal automaton that accepts L.

The concept of minimal cover automaton of a finite
language is introduced in [6] and it is shown that there may
be several minimal cover automata of the same language that
are not isomorphic. Furthermore, [6] provides an algorithm
that, for a finite language L (given as an FA that accepts
L or as a cover automaton of L). constructs a minimal cover
automaton of the language. Animproved algorithm (in terms
of complexity) is also presented in [7].

d SPECIICAlION NSO, espectally 10T HIfeTaclIve Sy SIells.
A tool to support the creation of SXM specifications has
been constructed [13]. The refinement of SXMs has been
investigated and techniques for refining given specifications
info more complex. more detailed implementation-oriented
versions have been developed [14. 15]. Furthermore, several
models of communicating SXMs have been devised and used
in real applications [16, 17. 18].

One of the strengths of using SXMs to specify a system is
that it is possible to derive test sets from an SXM specification
which, if satisfied. guarantee. under certain constraints,
the correctness of the implementation with respect to the
specification [10. 19, 20, 21]. Among these constraints
are the so-called ‘design for test conditions’ that the SXM
specification has to meet: input-completeness and output-
distinguishability [10. 19]. The class of SXMs that meet
these conditions is therefore of particular interest and has

The concept of minimal cover automaton of a finite
language is introduced in [6] and it 1s shown that there may
be several minimal cover automata of the same language that
are not isomorphic. Furthermore. [6] provides an algorithm
that. for a finite language L (given as an FA that accepts
L or as a cover automaton of L). constructs a minimal cover
automaton of the langnage. An improved algorithm (in terms
of complexity) is also presented in [7].

by giving a procedure for
utomata of a given finite
n generalized to a form of
ream X-machines (SXMs).

1e [8. 9, 10] that describes
ts. each with an internal
per of transitions between
cered by an input value,
ay alter the memory. An
A (the associated FA) in
rion names (the processing
bine the dynamic features
a structures, thus sharing

Teduced. In most ap,

Various case studies

LIIC UCIINIITS UL UL TITCG%W WiUTIu S.

licafions the maxumum [enefll of the

words in the language
of the length of the w
will usually be adeq
automata for finite laz

Informally. a cover
FA that accepts all wg

[6] Campeanu, C., Santean, N. and Yu, S. (1999) Mimimal cover
automata for finite languages. Theoretical Compufter Science,
267, 3-16.

[7] Paun, A, Santean, N. and Yu, S. (2001) An O(n?) algorithm

are longer than any wd
L is a cover automatoq
In many cases. a mini
smaller size than the i

for constructing minimal cover automata for finite languages.
LNCS, 2088, 243-251.

The concept of minimal cover automaton of a finite
language is introduced in [6] and it is shown that there may
be several minimal cover automata of the same language that
are not isomorphic. Furthermore, [6] provides an algorithm
that, for a finite language L (given as an FA that accepts
L or as a cover automaton of L). constructs a minimal cover
automaton of the language. Animproved algorithm (in terms
of complexity) is also presented in [7].

that it is possible to derive test sets from an SXM specification
which, if satisfied. guarantee. under certain constraints,
the correctness of the implementation with respect to the
specification [10. 19, 20, 21]. Among these constraints
are the so-called ‘design for test conditions’ that the SXM
specification has to meet: input-completeness and output-
distinguishability [10. 19]. The class of SXMs that meet
these conditions is therefore of particular interest and has

1. INTRODUCTION

Finite automata [1, 2, 3] are widely used in many areas
of computing, ranging from lexical analysis to circuit and
protocol testing. Finite automata are known to compute
regular languages [4. 5]. However. in many applications of
finite automata only finite languages are used. The number of
states of a finite automaton (FA) that accepts a finite language

This paper goes a step further by giving a procedure for
constructing all minimal cover automata of a given finite
langunage L. The procedure is then generalized to a form of
extended finite automata, called stream X-machines (SXMs).

An SXM is a type of X-machine [8. 9, 10] that describes
a system as a finite set of states. each with an internal
store called memory. and a number of transitions between

is at le
langua
On thg
accept
extra Y
langua
reduce]
words

of e An SXM is a type of X-machine [8. 9, 10] that describes
a system as a finite set of states. each with an internal

will u
autony

E— > “ by an input value,

This paper goes a step further by giving a procedure for [o the memory. An

1e associated FA) in

constructing all minimal cover automata of a given finite james (the processing
language L. The procedure is then generalized to a form of
extended finite automata. called stream X-machines (SXMSs). Various case studies

the dynamic features
wctures, thus sharing

alue of the SXM as
interactive systems.
M specifications has
it of SXMs has been

miq store called memory. and a number of transitions between given specifications

FA tha
are lon_

the states.

A transition is triggered by an input value,

lementation-oriented
Furthermore. several

L is A Ccoier antnamatnn of I havine tha laact immher nf etatac

models of communicating SXMs have been devised and used

In many
smaller

languag
be sevel
are not

[8] Eilenberg, S. (1994) Automata, Languages and Machines,
The Vol. A. Academic Press, New York.

[9] Holcombe, M. (1988) X-machines as a basis for dynamic
system spectfication. Software Engineering Journal, 3, 69-76.

o specify a system is
n SXM specification
certain constraints,
with respect to the
1g these constraints

that. foi [10] Holcombe, M. and Ipate, F. (1998) Correct Systems: Building [ions’ that the SXM

L or as
automa

a Business Process Solution. Springer Verlag, Berlin

leteness and output-
of SXMs that meet

of complexity) is also presented in [7].

these conditions is therefore of particular interest and has

	How references may establish a sound foundation of an article (and maybe a thesis)
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6

